

Automated Creation of
Work Distribution Functions for

Parallel Best-First Search

Yuu Jinnai　 Alex Fukunaga

The University of Tokyo

ICAPS-2016

Hash Distributed A* (HDA*)
Kishimoto, Fukunaga, & Botea (2009)

Hash Distributed A* (HDA*) is parallel A* which distributes nodes
according to a hash function which assigns each state to a unique process.

As HDA* relies on the hash function for load balancing,
the choice of hash function is significant to its performance!

Init

Process0 Process1

Goal

H(s) = 1

Work
Queue

Process1

Hash Distributed A* Hash usage
state space

Work
Queue

Process0

(Kishimoto et al. 2009)

Overview of Talk

good load balance
high communication overhead

Zobrist hashing (ZHDA*)

worse load balance
low communication overhead

State abstraction (AHDA*)

+

+

(Burns et al. 2010)(Zobrist 1970; Kishimoto et al. 2013)

good load balance
low communication overhead
requires feature abstraction as a parameter

+
+
*

(Jinnai&Fukunaga 2016)
Abstract Zobrist Hashing (AZHDA*)

This presentation proposes a method to automatically
generate efficient feature abstraction for Abstract
Zobrist hashing

Hash Function for HDA*

● State (s) is given as a set of features xi:
state s = (x1, x2,...,xn)

● Given a state s, a hash function H(s) returns the
process which owns the state s

Init

Process0 Process1

Goal

Hash usage
state space

Hash Function for HDA*

● We want H(s) to be balanced
 → load balance

0
init

1

2 3

4 5 6
goal

process0 process1

state space graph

Hash Function for HDA*

● We want H(s) to be balanced
 → load balance

● We want the value of H(s) to not change frequently
→ communication overhead

0
init

1

2 3

4 5 6
goal

process0 process1

state space graph

0
init

1

2 3

4 5 6
goal

state space graph

process0 process1

Zobrist Hashing (ZHDA*)
Zobrist (1970); Kishimoto et al. (2009)

● Goal: Distribute nodes uniformly among processes

● Method: Initialize a table of random bit strings R; XOR
the hash value Ri[xi] for each feature

Z(s) = R1[x1] xor R2[x2] xor ... xor Rn[xn]

00100101

10001100

00000111

10101110
2

1

4 1 2
3 5 6
7 8

3

x1=2

x2=3

x3=4

State
s

Feature
xi

Feature
Hash
Ri[xi]

State
Hash
Z(s)

(xi represents the position of tile i)

Zobrist Hashing (ZHDA*)
Zobrist (1970); Kishimoto et al. (2009)

Z(s) = R1[x1] xor R2[x2] xor ... xor Rn[xn]

R1[2] =

R2[3] =

R3[4] =

● Strenght: good load balance
● Limitation: high communication overhead

process0 process1

process0 process1

Communication Cost

0
init

1

2 3

4 5 6
goal

0
init 1

2
3

4
5

6
goal

Zobrist Hashing (ZHDA*)
Zobrist (1970); Kishimoto et al. (2009)

state space graph

State abstraction (AHDA*)
Burns et al. (2010)

● Goal: Assign neighbor nodes to the same process

● Method: Project states into abstract states, and
abstract states are assigned to processors

10100001

3 1 6

4 5 2

7 8

3 1

2

A(s) = R[s']

State
s

Abstract
State
s'

State
Hash
R[s']

Example: s' only considers the position of tile 1,2, and 3:

process0 process1

Communication Cost

0
init

1

2 3

4 5 6
goal

process0 process1

State abstraction (AHDA*)
Burns et al. (2010)

● Strenght: low communication overhead
● Limitation: worse load balance

0
init

1
2

5
6

goal

state space graph

Abstract Zobrist Hashing (AZHDA*)
Jinnai&Fukunaga (2016)

Goal: Distributes nodes uniformly while assigning neighbor
nodes to the same process

Method: Apply feature abstraction Ai(xi) to project features
into abstract features and XOR the hash value of each abstract
feature

AZ(s) = R1[A1(x1)] xor R2[A2(x2)] xor ... xor Rn[An(xn)]

AZ(s) = Z(s'), where s' = (A1(x1), A2(x2),..., An(xn))

or

Abstract Zobrist Hashing (AZHDA*)
Jinnai&Fukunaga (2016)

AZ(s) = R1[A1(x1)] xor R2[A2(x2)] xor ... xor Rn[An(xn)]

01010001

01100010

00101100

00011111

2

1

4 1 2
3 5 6
7 8

State
s

Feature
xi

3

Abstract
Feature
Hash

Ri[Ai(xi)]

State
Hash
AZ(s)

1

2

3

Abstract
Feature
Ai(xi)

x1=2

x2=3

x3=4

A1(x1)=1

A2(x2)=1

A3(x3)=2

Zobrist Hashing (ZHDA*)
Zobrist (1970); Kishimoto et al. (2009)

Z(s) = R1[x1] xor R2[x2] xor ... xor Rn[xn]

01010001

01100010

00101100

00011111

2

1

4 1 2
3 5 6
7 8

State
s

Feature
xi

3

Feature
Hash
Ri[xi]

State
Hash
Z(s)

x1=2

x2=3

x3=4

State abstraction (AHDA*)
Burns et al. (2010)

10100001

3 1 6

4 5 2

7 8

3 1

2

A(s) = R[s']

State
s

Abstract
State
s'

State
Hash
R[s']

Example: s' only considers the position of tile 1,2, and 3:

Abstract Zobrist Hashing (AZHDA*)
Jinnai&Fukunaga (2016)

AZ(s) = R1[A1(x1)] xor R2[A2(x2)] xor ... xor Rn[An(xn)]

01010001

01100010

00101100

00011111

2

1

4 1 2
3 5 6
7 8

State
s

Feature
xi

3

Abstract
Feature
Hash

Ri[Ai(xi)]

State
Hash
AZ(s)

1

2

3

Abstract
Feature
Ai(xi)

x1=2

x2=3

x3=4

A1(x1)=1

A2(x2)=1

A3(x3)=2

Init

Goal

process0 process1

process0 process1

Communication Cost

Abstract Zobrist Hashing (AZHDA*)
Jinnai&Fukunaga (2016)

state space graph

● Achieves good load balancing using Zobrist hashing

● Reduces communication overhead using feature
abstraction

The performance of AZHDA* with
hand-crafted abstract feature

● (Jinnai&Fukunaga, 2016) showed that Abstract
Zobrist hashing using hand-crafted feature
abstraction significantly outperformed previous
methods (Zobrist hashing and Abstraction)

24-puzzle
(Jinnai&Fukunaga 2016)

● AZHDA*:
Abstract Zobrist hashing + HDA*

● AHDA:
State abstraction + HDA*

● ZHDA*:
Zobrist hashing + HDA*

Zobrist hashing for planning

We can use SAS+ variables for Zobrist hashing

A

B

Example: blocks world

x1 x2 x3
s = (x1,x2,x3)

handempty

not
handempty

holding(a)

on(a,b)

ontable(a)

holding(b)

on(b,a)

ontable(b)

Z(s) = R1[x1] xor R2[x2] xor ... xor Rn[xn]

Abstract Zobrist hashing for planning

To apply AZHDA* on domain-independent planning, we
have to generate feature abstraction Ai(xi) automatically

A

B

Example: blocks world
Grey squares represent feature abstraction

x1 x2 x3
s = (x1,x2,x3)

handempty

not
handempty

holding(a)

on(a,b)

ontable(a)

holding(b)

on(b,a)

ontable(b)

AZ(s) = R1[A1(x1)] xor R2[A2(x2)] xor ... xor Rn[An(xn)]

Greedy abstract feature generation
(Jinnai&Fukunaga 2016)

xi=1

xi=4

xi=7

xi=2

xi=5

xi=8

xi=3

xi=6

xi=9

GreedyAFG applied to DTG of 8-puzzle

DTG of a variable xi
represents the
transition of the value

Approach: maps each SAS+ variable xi to abstract feature S1
and S2 based on xi's domain transition graphs (nodes are
values, edges are transitions)

Greedy abstract feature generation
(Jinnai&Fukunaga 2016)

xi=1

xi=4

xi=7

xi=2

xi=5

xi=8

xi=3

xi=6

xi=9

S1

GreedyAFG applied to DTG of 8-puzzle

Approach: maps each SAS+ variable xi to abstract feature S1
and S2 based on xi's domain transition graphs (nodes are
values, edges are transitions)

1. Assign the minimal degree node to S1

DTG of a variable xi
represents the
transition of the value

Greedy abstract feature generation
(Jinnai&Fukunaga 2016)

S1

GreedyAFG applied to DTG of 8-puzzle

Approach: maps each SAS+ variable xi to abstract feature S1
and S2 based on xi's domain transition graphs (nodes are
values, edges are transitions)

1. Assign the minimal degree node to S1

2. Add to S1 the unassigned node which shares the most edges
with node in S1

xi=1

xi=4

xi=7

xi=2

xi=5

xi=8

xi=3

xi=6

xi=9

DTG of a variable xi
represents the
transition of the value

Greedy abstract feature generation
(Jinnai&Fukunaga 2016)

S1

GreedyAFG applied to DTG of 8-puzzle

Approach: maps each SAS+ variable xi to abstract feature S1
and S2 based on xi's domain transition graphs (nodes are
values, edges are transitions)

1. Assign the minimal degree node to S1

2. Add to S1 the unassigned node which shares the most edges
with node in S1

3. Until |S1| reaches the half of the DTG, repreat step 2.

xi=1

xi=4

xi=7

xi=2

xi=5

xi=8

xi=3

xi=6

xi=9

DTG of a variable xi
represents the
transition of the value

Greedy abstract feature generation
(Jinnai&Fukunaga 2016)

Approach: maps each SAS+ variable xi to abstract feature S1
and S2 based on xi's domain transition graphs (nodes are
values, edges are transitions)

1. Assign the minimal degree node to S1

2. Add to S1 the unassigned node which shares the most edges
with node in S1

3. Until |S1| reaches the half of the DTG, repeat step 2.

4. Assign all unassigned nodes to S2

S1

S2

GreedyAFG applied to DTG of 8-puzzle

A i(x i)=
1 (if x i∈S1)

2 (if x i∈S2)

xi=1

xi=4

xi=7

xi=2

xi=5

xi=8

xi=3

xi=6

xi=9

DTG of a variable xi
represents the
transition of the value

The performance of GreedyAFG
(Jinnai&Fukunaga 2016)

● Evaluated on IPC benchmarks

● Single multicore machine (8 cores)

● Pattern database heuristics

● AZHDA* using GreedyAFG achieved only a modest
improvement over previous methods

→ What the problem of GreedyAFG?

AZH/GreedyAFG Zobrist Abstraction

Walltime (sec) 282 298 341

Speedup efficiency 0.797 0.766 0.729

Search overhead 0.01 0.01 0.34

Comm. overhead 0.62 0.86 0.40

Problem of GreedyAFG

● GreedyAFG incurs communication overhead if ANY of the
abstract feature changes its value from the parent node
(because a hash value is a function of a set of abstract
features)

● If any of the Ai(xi) changes, then the value of Ri[Ai(xi)]
changes, then AZ(s) changes (thus incurs communication
overhead)

AZ(s) = R1[A1(x1)] xor R2[A2(x2)] xor ... xor Rn[An(xn)]

Problem of GreedyAFG

A

B

handempty

not
handempty

holding(a)

on(a,b)

ontable(a)

holding(b)

on(b,a)

ontable(b)

Grey squares are the abstract features
generated by GreedyAFG

● GreedyAFG incurs communication overhead if ANY of the
abstract feature changes its value from the parent node
(because a hash value is a function of a set of abstract
features)

Problem of GreedyAFG

handempty

not
handempty

holding(a)

on(a,b)

ontable(a)

holding(b)

on(b,a)

ontable(b)

A

B

Grey squares are the abstract features
generated by GreedyAFG

● GreedyAFG incurs communication overhead if ANY of the
abstract feature changes its value from the parent node
(because a hash value is a function of a set of abstract
features)

Problem of GreedyAFG

A B

handempty

not
handempty

holding(a)

on(a,b)

ontable(a)

holding(b)

on(b,a)

ontable(b)

Grey squares are the abstract features
generated by GreedyAFG

● GreedyAFG incurs communication overhead if ANY of the
abstract feature changes its value from the parent node
(because a hash value is a function of a set of abstract
features)

Problem of GreedyAFG

handempty

not
handempty

holding(a)

on(a,b)

ontable(a)

holding(b)

on(b,a)

ontable(b)

A

Grey squares are the abstract features
generated by GreedyAFG

B

● GreedyAFG incurs communication overhead if ANY of the
abstract feature changes its value from the parent node
(because a hash value is a function of a set of abstract
features)

Problem of GreedyAFG

A

B

handempty

not
handempty

holding(a)

on(a,b)

ontable(a)

holding(b)

on(b,a)

ontable(b)

Grey squares are the abstract features
generated by GreedyAFG

● GreedyAFG incurs communication overhead if ANY of the
abstract feature changes its value from the parent node
(because a hash value is a function of a set of abstract
features)

Problem of GreedyAFG

A

B

handempty

not
handempty

holding(a)

on(a,b)

ontable(a)

holding(b)

on(b,a)

ontable(b)

This abstract feature ALWAYS changes its value!
Thus ALL node generations may incur communication overhead!

● GreedyAFG incurs communication overhead if ANY of the
abstract feature changes its value from the parent node
(because a hash value is a function of a set of abstract
features)

● We propose Fluency-based filtering which ignores features
which change their values too frequently

● We apply GreedyAFG to the rest of the features

A

B

handempty

not
handempty

holding(a)

on(a,b)

ontable(a)

holding(b)

on(b,a)

ontable(b)

Fluency-Based Filtering

Fluency-Based Filtering

A

B

● We define fluency of a variable x

● Our implementation ignores variables whose fluency is in
the top 30% of the variables

fluency (x):=
number of ground actionswhich change the value of x

total number of ground actions

handempty

not
handempty

holding(a)

on(a,b)

ontable(a)

holding(b)

on(b,a)

ontable(b)

fluency(x0) = 1.0 fluency(x1) = 0.5 fluency(x2) = 0.5

● In fact, variables with high fluency are common in wide range of
domains

● For example, in domains modeling agent-environment,
variables modeling the state of agents tend to have high fluency

A

B

blocks world sokobangripper

Fluency-Based Filtering

● Zobrist hashing incurs significant communication overhead

● Method: Preinitialize the random table so that the given
operator does not change the hash value

Operator-based Zobrist hashing

A

B

A B

putdown(b)

H(s) = 1011 H(a) = 0000 H(s')
 = H(s) xor H(a)
 = 1011
 (= H(s))

● In previous work, AHDA* used a fix threshold to the number of
the abstract nodes

● This leads to suboptimal performance to instance set with
varying difficulity (especially in distributed memory cluster)

● Dynamic AHDA* set the threshold according to the size of the
problem difficulty

● Our current implementation set the threshold of the total
number of features in the abstract state space to be 30% of the
total number of features in the problem instance

Dynamic AHDA*

Experiments
● We evaluated HDA* variants on IPC benchmarks (21

instances)

● 48 cores (6 machines with 8 cores)

● Based on FastDownward and MPICH3

● merge&shrink heuristic (LFPA)

Experiments

→FAZHDA* outperformed GAZHDA* and other HDA* variants

● FAZHDA*: AZHDA* using GreedyAFG with fluency filtering

● OZHDA*: Operator-based Zobrist hashing

● DAHDA*: Dynamic AHDA*

● GAZHDA*: AZHDA* using GreedyAFG without fluency filtering

Summary of Paper

Zobrist hashing
(ZHDA*)

State abstraction
(AHDA*)

GreedyAFG
(GAZHDA*)

Summary of Paper

Zobrist hashing
(ZHDA*)

State abstraction
(AHDA*)

GreedyAFG
(GAZHDA*)

Fluency-based
Filtering

(FAZHDA*)

● We proposed Fluency-based filtering for AZHDA* which ignores
variables which frequently change their values

Summary of Paper

Zobrist hashing
(ZHDA*)

State abstraction
(AHDA*)

GreedyAFG
(GAZHDA*)

Operator-based
Zobrist hashing

(OZHDA*)

Fluency-based
Filtering

(FAZHDA*)

● We proposed Fluency-based filtering for AZHDA* which ignores
variables which frequently change their values

● We proposed Operator-based Zobrist hashing which generate
Zobrist hashing bitstrings that ensures reduced communication
overhead

Summary of Paper

Zobrist hashing
(ZHDA*)

State abstraction
(AHDA*)

GreedyAFG
(GAZHDA*)

Operator-based
Zobrist hashing

(OZHDA*)

Fluency-based
Filtering

(FAZHDA*)

Dynamic AHDA*
(DAHDA*)

● We proposed Fluency-based filtering for AZHDA* which ignores
variables which frequently change their values

● We proposed Operator-based Zobrist hashing which generate
Zobrist hashing bitstrings that ensures reduced communication
overhead

● We implemented Dynamic AHDA* to determine the size of
abstract state space according to the instance difficulty

Summary of Paper

Zobrist hashing
(ZHDA*)

State abstraction
(AHDA*)

GreedyAFG
(GAZHDA*)

Operator-based
Zobrist hashing

(OZHDA*)

Fluency-based
Filtering

(FAZHDA*)

Dynamic AHDA*
(DAHDA*)

● We proposed Fluency-based filtering for AZHDA* which ignores
variables which frequently change their values

● We proposed Operator-based Zobrist hashing which generate
Zobrist hashing bitstrings that ensures reduced communication
overhead

● We implemented Dynamic AHDA* to determine the size of
abstract state space according to the instance difficulty

● AZHDA*+Fluency-based filtering performed the best

Operator-based Zobrist hashing

● Let s' be the child node of s using operator a

● Assume all effects in add&delete effect take place

● Zobrist hash value of s' is

where Z(a) = R[p1] xor R[p1] xor … xor R[p1] for all
propositions pi in add&delete effect in a

→If Z(a) = 0, then Z(s') = Z(s)

Z(s) = R[x1] xor R[x2] xor ... xor R[xn]

Z(s') = Z(a) xor Z(s)

Operator-based Zobrist hashing

→If Z(a) = 0, then Z(s') = Z(s)

1. Select one operator

2. Modify a value of Ri[xi] value without a flag so that
 Z(a) = 0

3. Set flags to all propositions in a so that they won't be
modified later

4. Repeat from 1

● We select the operator with least preconditions (future work)

Z(s) = R1[x1] xor R2[x2] xor ... xor Rn[xn]

Dynamic AHDA* construction
● Follows the construction of Structured Duplicate Detection

(SDD) (Zhou&Hansen 2007)

● Idea: Add an atom group which preserve the locality the
best

● Select an atom group (= SAS+ variable) which retains the
maximum-degree of the abstract state graph smallest
compared to the graph size

● Add the atom group into the abstract state representation

● Terminate if the size of the abstract state reaches a
threshold Nmax

● Abstract state is represented using the selected atom
groups, and the projection from a state to an abstract state
simple ignores all features not in the atom groups

p1

Open

Closed

p2

Open

Closed

p3

Open

Closed

p0

Open

Closed

● Each thread has its own open/closed list

● Each thread sends generated nodes to its owner (assigned
by the hash function)

● Other than sending/recieving each thread runs A* search

Hash Distributed A* (HDA*)
Kishimoto, Fukunaga, & Botea (2009)

Summary of Paper
● GreedyAFG generates abstract features for Abstract Zobrist

hashing but fails to reduce communication overhead due to
variables with high fluency

● We introduced a notation of fluency and proposed Fluency-
based filtering which ignores variables which frequently
change their values

● We proposed Operator-based Zobrist hashing which
generate Zobrist hashing bitstrings that ensures reduced
communication overhead

● We implemented Dynamic AHDA* to determine the size of
abstract state space according to the instance difficulity

● AZHDA*+Fluency-based filtering performed the best

effesti vs. efficiency
● We define a metric to estimate the walltime efficiency effesti and

actual walltime efficiency

eff esti :=
1

(1+cCO)(1+SO)

